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Mihály Novák Geant4 meeting 28-09-2015 3 / 46



Introduction Angular distribution Path length correction, Transport algorithm, MSC step limit Some calorimeter response results Conclusion

Why do we need multiple scattering model?

event-by-event modelling of elastic scattering is feasible only if the mean number of interactions per track
is below few hundred
this limits the applicability of the detailed simulation model only for electrons with relatively low kinetic
energies (up to Ekin ∼ 100 keV) or thin targets
fast (Ekin > 100 keV) electrons undergo a high number of elastic collisions in the course of its slowing
down in tick targets
detailed simulation becomes very inefficient, high energy particle transport simulation codes employ
condensed history simulation model
each particle track is simulated by allowing to make individual steps that are much higher than the
average step length between two successive elastic interactions
the net effects of these high number of elastic interactions such as angular deflection and spacial
displacement is accounted at each individual condensed history step by using multiple scattering theories.
the accuracy of modelling the cumulative effects of many elastic scattering in one step strongly depends
on the capability of the employed multiple scattering theory to describe the angular distribution of
electrons after travelling a given path length.
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transport length: t

sampled step length: s
transport length along ẑ : z

Ψ

θ

Multiple scattering model needs to provide:
the angular deflection (θ) after travelling a given path length (s)
path length correction (PLC), lateral correlation algorithm (LCA), longitudinal and lateral correlation
algorithm (LLCA)
where is the particle at the post step point and what is the direction of motion
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Theoretical background in a nutshell

Geant4 Goudsmit-Saunderson model is the
Kawrakow-Bielajew model for elastic scattering
[I.Kawrakow,A.F.Bielajew, NIMB 134(1998)325-336]

based on the Goudsmit-Saunderson theory of multiple elastic scattering
[S.Goudsmit,J.L.Saunderson, PR 57(1940)24-29]

hybrid model for (no, single and) multiple elastic scattering of e−/e+

[A.F.Bielajew, NIMB 111(1996)195-208]

based on the screened Rutherford DCS (differential cross section) for elastic scattering
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Goudsmit-Saunderson(GS) theory

Goudsmit-Saunderson angular distribution after travelling a path s:

F (s; θ)GS =
∞∑
`=0

2`+ 1
4π exp(−s/λ`)P`(cos(θ))

dσ
dΩ -elastic DCS; σ =

∫
dσ
dΩ dΩ-elastic cross section; λ−1 = Nσ-elastic mean free path

f1(θ) = 1
σ

dσ
dΩ is single elastic scattering distribution (note that 2πf1(θ) = 2π 1

σ
dσ
dΩ = p(cos(θ)))

f1(θ) is expressed in terms of orthogonal polynomials (Legendre series)
f1(θ) =

∑∞
`=0

2`+1
4π F`P`(cos(θ))

F` = 2π
∫ 1
−1 f1(θ)P`(cos(θ))d(cos(θ)) = 〈P`(cos(θ))〉

G` are the `-th transport coefficients G` ≡ 1− F` = 1− 〈P`(cos(θ))〉
λ−1
`
≡ G`

λ
= 1−F`

λ
= 1−〈P`(cos(θ))〉

λ

then F (s; θ) =
∑∞

n=0 fn(θ)Wn(s)
fn(θ) the angular distribution after n elastic interactions fn(θ) =

∑∞
`=0

2`+1
4π (F`)nP`(cos(θ))

Wn(s) = exp(−s/λ) (s/λ)n

n! is the probability of having exactly n elastic interaction along a path s
(i.e. Poisson)

[S.Goudsmit,J.L.Saunderson, PR 57(1940)24-29; J.M.Fernández-Varea,R.Mayol,J.Baró,F.Salvat NIMB 73(1993)447-473]
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Combination of GS-theory with screened Rutherford DCS

Using a simple exponentially screened Coulomb potential as the scattering potential in the
computation of the scattering amplitudes under the first Born approximation(Wentzel model):

dσ
dΩ = |f |2 where f ≡ f (θ, φ) is the scattering amplitude

which fB1(θ, φ) = − 2m
4π~2

∫
ei(k̄f−k̄i )r̄′V (r̄ ′)d3r ′ in the first Born approximation [where: k̄i , k̄f and V (r̄ ′) are the wave vectors

of the incident plane, the outgoing(scattered) spherical spherical wave and the scattering potential respectively. Note that: (i) in case of elastic scattering ki = kf ≡ k; (ii)

~q̄ = ~(k̄f − k̄i ) is the momentum transfer and q2 = |k̄f − k̄i |2 = 2k2 (1 − cos(θ)) = 2k2 (2 sin2 (θ/2)) where θ ≡ ∠(k̄i , k̄f ) is the scattering angle]

assuming V (r̄) ≡ V (r) i.e. spherically symmetric scattering potential, substituting q̄ = k̄f − k̄i and
choosing the coordinate system for the integration such that q̄ = qˆ̄z
fB1(θ) = − 2m

q~2

∫∞
0 sin(qr ′)r ′V (r ′)dr ′

then using a simple exponentially screened Coulomb potential as the scattering potential i.e.
V (r) = ZZ ′e2

r e−r/R [Z target atomic number, Z ′e projectile charge, R screening radius ] we can get

fB1(θ) = − 2m
~2 ZZ ′e2

[
1

2k2[1−cos(θ)+R−2/(2k2)]

]
which gives dσ

dΩ
(W ) =

(
ZZ ′e2

pcβ

)2
1

(1−cos(θ)+R−2/(2k2))2

one can introduce A ≡ 1
4

(
~
p

)2 R−2 screening parameter [note that 1/(2k2R2 ) = 2A] that gives the DCS for elastic

scattering dσ
dΩ

(W ) =
(

ZZ ′e2

pcβ

)2
1

(1−cos(θ)+2A)2 and the corresponding
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Combination of GS-theory with screened Rutherford DCS

So DCS for elastic scattering within the Wentzel model is

dσ
dΩ

(W )
=
(

ZZ ′e2

pcβ

)2 1
(1− cos(θ) + 2A)2

σ(W ) =
(

ZZ ′e2

pcβ

)2
π

A(1+A)

f (W )
1 (θ) = 1

π
A(1+A)

(1−cos(θ)+2A)2

G(W )
`

(A) = 1− F` = 1− `[Q`−1(1 + 2A)− (1 + 2A)Q`(1 + 2A)] [Q`(x) are Legendre functions of the second kind]

G(W )
`=1 (A) = 2A

[
ln
(

1+A
A

)
(A + 1)− 1

]
note that 1

λ1
=

G(W )
`=1 (A)
λ

gives the possibility set the screening parameter A such that the corresponding

DCS dσ
dΩ

(W ) will give back λ1 [therefore e.g. 〈cos(θ)〉 = exp (−s/λ1) will be correct]
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Kawrakow-Bielajew hybrid model

First derive Bielajew’s hybrid form of the GS distribution i.e. separate the no, single and at least two
elastic scattering contributions:

Wn=0(s) = exp(−s/λ); Wn=1(s) = exp(−s/λ)(s/λ); Wn≥2(s) = 1− exp(−s/λ)− exp(−s/λ)(s/λ)

the GS series becomes [note that it is a p.d.f. of θ i.e.
∫

Ω
F (s; θ)dΩ = 1]

F (s; θ)GS =
∞∑

n=0

fn(θ)Wn(s) = fn=0(θ)Wn=0 + fn=1(θ)Wn=1 +
∞∑

n=2

fn(θ)Wn(s) = e−s/λ δ(1− cos(θ))
2π

+ (s/λ)e−s/λfn=1(θ) +
∞∑
`=0

2`+ 1
4π

P`(cos(θ))
{

e−(s/λ)G` − e−(s/λ) [1 + (s/λ)(1− G`)]
}

make the transformation θ → µ ≡ cos(θ) [which is the p.d.f. of µ i.e.
∫ +1

−1
F (s;µ)dµ = 1]

F (s;µ)GS =2πF (s; θ → µ)GS = e−s/λδ(1− µ) + (s/λ)e−s/λ2πfn=1(µ)+
∞∑
`=0

(`+ 0.5)P`(µ)
{

e−(s/λ)G` − e−(s/λ) [1 + (s/λ)(1− G`)]
}

[A.F.Bielajew, NIMB 111(1996)195-208; I.Kawrakow,A.F.Bielajew, NIMB 134(1998)325-336;]
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Kawrakow-Bielajew hybrid model

in order to get all 3 terms in the form of probability x p.d.f.

F (s;µ)GS = e−s/λδ(1− µ) + (s/λ)e−s/λ2πfn=1(µ) + (1− e−s/λ − (s/λ)e−s/λ)F (s;µ)2+
GS

where

F (s;µ)2+
GS ≡

∞∑
`=0

(`+ 0.5)P`(µ)
e−(s/λ)G` − e−(s/λ) [1 + (s/λ)(1− G`)]

1− e−s/λ − (s/λ)e−s/λ

no-scattering case: trivial
single scattering case: using the Wentzel model, the PDF for single scattering
p(A;µ) = 2πfn=1(µ) = 2A(1+A)

(1−µ+2A)2 the corresponding CDF P(A;µ) = (A+1)(1−µ)
1−µ+2A and the sampling

µ = P−1(A; ξ) = 1− 2Aξ
1−ξ+A where ξ ∈ U(0, 1)

multiple scattering case: need to sample from F (s;µ)2+
GS → pre-compute
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Kawrakow-Bielajew hybrid model

Variable transformation is needed to obtain smooth distributions → reduce memory footprint and
improve sampling

suppose that we apply the transformation u = f (a1, ..., an;µ) [where u ∈ [0, 1] the transformed variable f is the transformation function

with a1, ..., an parameters that control the shape of the result of the transform]

let q2+(u) PDF of u be the transformed F (s;µ)2+
GS PDF of µ that needs to satisfy the requirement

q2+(s; u)du = F (s;µ)2+
GSdµ [i.e.the probability of having u falling into the du interval around u according to the transformed PDF q2+ (u) is equal to the probability of

having µ falling into the du interval around µ according to the original PDF F (s;µ)2+
GS

]

which means that q2+(s; u) = F (s;µ)2+
GS

dµ
du where dµ

du =
(

du
dµ

)−1 =
(
∂f (a1,...,an ;µ)

∂µ

)−1

the parameters ai i = 1, ..., n of the transformation can be determined through the optimization

0 =
∂

∂ai

[∫ 1

0

[
q2+(s; u)− 1

]2
du
]

=
∫ +1

−1

[
F (s;µ)2+

GS

(
∂f (a1, ..., an;µ)

∂µ

)−1
]2 [

∂2f (a1, ..., an;µ)
∂µ∂ai

]
dµ

[we want the transformed q2+ (s; u) PDF to be as close as possible to the uniform distribution (in least-square sense)]

in the case of using the Wentzel model one can take u = f (a;µ) = (a+1)(1−µ)
1−µ+2a ; the corresponding inverse

transform µ = 1− 2au
1−u+a [note that f (a;µ) corresponds to the single scattering Wentzel CDF with a scaled a = w2A screening parameter, where the scaling factor w

is arbitrary at the moment; the motivation behind this: if P(µ) would be the exact CDF that corresponds to the original PDF F (s;µ)2+
GS

and one would use f (µ) ≡ P(µ), the

transformed distribution would be the uniform distribution(in order to see this, just plug f (µ) ≡ P(µ) into the third item on this page).]

[I.Kawrakow,A.F.Bielajew, NIMB 134(1998)325-336]
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Kawrakow-Bielajew hybrid model

the optimal parameter of the transformation can be determined by plugging the chosen transformation
function u = f (a;µ) = (a+1)(1−µ)

1−µ+2a into the results of the optimization i.e.

0 =
∫ +1
−1

[
F (s;µ)2+

GS

(
− [1−µ+2a]2

2a(1+a)

)]2 [
−2 1−µ(1+2a)

[1−µ+2a]3

]
dµ that leads to the optimal solution

a = α
4β +

√(
α
4β

)2 + α
4β where

α =∑∞
`=0 γ`(s, λ,A)

{(
1.5`+ 0.065

`+1.5 + 0.065
`−0.5 + 0.75

)
γ`(s, λ,A)− 2(`+ 1)γ`+1(s, λ,A) + (`+1)(`+2)

(2`+3) γ`+2(s, λ,A)
}

β =
∑∞

`=0(`+ 1)γ`(s, λ,A)γ`+1(s, λ,A) and γi (s, λ,A) = e−(s/λ)Gi (A)−e−(s/λ)[1+(s/λ)(1−Gi (A))]
1−e−s/λ−(s/λ)e−s/λ

it would be too expensive to compute these optimal values of a at runtime (at the back transform) so one
can use a polynomial fit to the optimal w2 ≈ w̃2 then a ≈ ã = w̃2A can be obtained (both at
pre-computation and at run time for the back transform). Kawrakow obtained

w̃2

0.5(s/λ)+2 =

{
1.347 + t(0.209364− t(0.45525− t(0.50142− t0.081234))) if s/λ < 10

−2.77164 + t(2.94874− t(0.1535754− t0.00552888)) otherwise
where t = ln(s/λ).
the transformed distribution

q2+(s, λ, a,A; u) = 2a(1−a)
[1−u+a]2

∑∞
`

(`+ 0.5)P`
[

1− 2au
1−u+a

]
γ`(s, λ,A)

[I.Kawrakow,A.F.Bielajew, NIMB 134(1998)325-336, I Kawrakow et al., NRCC Report PIRS-701]
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Kawrakow-Bielajew hybrid model
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Kawrakow-Bielajew hybrid model
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Kawrakow-Bielajew hybrid model

The new version of Kawrakow-Bielajew Goudsmit-Saunderson model:
q2+(s/λ,G1s/λ; u) PDFs are pre-computed over a 2D s/λ, G1s/λ grid using an `max = 104 limit in the
GS series
the previously discussed variable transformation is used to achieve smooth PDFs
statistical interpolation in log(s/λ) and G1s/λ is used that gives accurate results (no loop, no search, no
conditions, 2 random numbers)
pre-computed data are stored over the 2D parameter grid in form of inverse CDFs with equally probably
bins achieved by using rational interpolation :

bin identification i.e. find k such that ξk ≤ ξ < ξk+1 can be done in one step(no loop, no search,
no conditions)
then rational interpolation is used to solve P−1(ξ) = x , ξk ≤ ξ < ξk+1(proper derivatives, no loop,
no search, no conditions)
only 1 random number is needed to preform the sampling

results in:
accurate, robust sampling
next slide: compare the old and new angular distributions/sampling
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Kawrakow-Bielajew hybrid model

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
d

ep
 [

M
eV

/g
/c

m
2
]

R/R0

Ep = 0.521 [MeV] e- in Al;  #primaries = 1x10
6

Exp.
G4-opt0;  RT = 255.36 [s]
G4-GS-new;  RT = 253.2 [s]
G4-GS-old;  RT = 431.86 [s]

Figure: Geant4 ../examples/extended/electromagnetic/TestEm11 (Sandia): energy deposit of 512 [keV]
electrons in Al.

experimental data: G.J.Lockwood et al. Sandia report SAND79-0414.UC-34a, February 1987
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Kawrakow-Bielajew hybrid model
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2-different path-length correction (displacement) options:
the simple PRESTA(Parameter Reduced Electron-Step Transport Algorithm) algorithm : the transport
distance in the initial direction of motion is set to its mean value 〈z〉 = λ1[1− exp(−t/λ1)] )
LLCA (Lateral and Longitudinal Correlation Algorithm): most accurate EGSnrc like transport algorithm
(computationally more expensive, but it can give back the longitudinal and radial distributions obtained
by using single scattering algorithm)

PRESTA: A.F.Bielajew et al., NIMB 18(1986)165-181; LLCA: I.Kawrakow et al.,NIMB 142(1998)253-280
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3-different step limitations in multiple scattering
fUseSafety ⇒ error free stepping : ensures that everything(regarding MSC) can be done in the step-limit
phase. It is possible only if we know the true-step length before transportation → we need to make
sure, that transportation won’t hit any boundaries.

skin-depth, defined in terms of (few)elastic mean free path is used
whenever safety (or the current-minimum step) is smaller that skin-depth we switch to single
scattering mode
if the particle is out of skin-depth it is ensured that the true-step length is not longer than
safety
boundaries can be reached only in single scattering mode (i.e. no MSC)
we know in the step limit phase(before transportation) what will be the true-step length
everything can be done in the step-limit phase
everything can be done in the step-limit phase (if we are doing an MSC step):

sampling of angular deflection that corresponds to the given true-step length (using the
most accurate EGSnrc like energy loss correction)
sampling of final position (by using the most accurate EGSnrc like displacement sapling and
computation)
true-step length is always known and corresponding geometrical length is given by the
displacement computation (including accurate energy loss correction). Since transportation
cannot hit boundary we do not need any other true-geometric-true path length conversion

range-factor can be set to any value (0.2 by default) since we limit the true step length to the
first-transport mean free path (theoretical limit of any condensed history techniques that (in 2-step
sampling) corresponds to 〈cos(θ)〉 = exp(−t/λ1)→ tmax = 0.5λ1 ⇒ 0.9191[rad] = 52.66o)
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more details: E.Poon et al., Phys.Med.Biol.50(2005)681-694
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fUseDistanceToBoundary ⇒ corresponds to Urban’s fUseDistanceToBoundary i.e. opt3 without having
any minimum path length limit (GS model works for any short true-path lengths); range-factor = 0.2
fUseSafetyPlus ⇒ corresponds to Urban’s fUseSafety i.e. opt0 without having any minimum path
length limit (GS model works for any short true-path lengths); range-factor = 0.15
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Simplified calorimeter (TestEm3)
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ATLAS barrel type simplified calorimeter
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ATLAS barrel type simplified calorimeter
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ATLAS barrel type simplified calorimeter

cut [mm] Urban-opt0 GS-opt0 Urban-opt3
100 2.11e+03 2.11e+03 2.11e+03
10 3.72e+03 3.73e+03 3.73e+03
7 3.92e+03 3.93e+03 3.92e+03
3 4.60e+03 4.60e+03 4.60e+03
1 5.08e+03 5.09e+03 5.09e+03

0.7 5.21e+03 5.22e+03 5.22e+03
0.3 5.86e+03 5.87e+03 1.02e+04
0.1 7.14e+03 7.15e+03 1.16e+04

0.03 8.67e+03 8.68e+03 1.38e+04
0.01 1.01e+04 1.01e+04 1.69e+04

Table: number of gammas
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ATLAS barrel type simplified calorimeter

cut [mm] Urban-opt0 GS-opt0 Urban-opt3
100 3.76e+03 3.76e+03 3.76e+03
10 6.91e+03 6.92e+03 6.92e+03
7 7.17e+03 7.18e+03 7.18e+03
3 7.98e+03 8.01e+03 8.01e+03
1 8.70e+03 8.72e+03 8.72e+03

0.7 8.96e+03 8.98e+03 8.98e+03
0.3 1.01e+04 1.01e+04 1.47e+04
0.1 1.26e+04 1.26e+04 1.73e+04

0.03 1.71e+04 1.71e+04 2.25e+04
0.01 2.71e+04 2.71e+04 3.42e+04

Table: number of electrons
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ATLAS barrel type simplified calorimeter

cut [mm] Urban-opt0 GS-opt0 Urban-opt3
100 27241 15510 51862
10 35789 21898 64588
7 36505 22457 65431
3 38760 24270 68165
1 41341 26216 71677

0.7 42182 26867 72870
0.3 45024 29348 81452
0.1 50420 34467 87487

0.03 59302 43295 95970
0.01 78181 62549 114558

Table: number of charged steps
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ATLAS barrel type simplified calorimeter

cut [mm] Urban-opt0 GS-opt0 Urban-opt3
100 20709 20940 20869
10 34169 34695 34501
7 34655 35203 34979
3 35766 36402 36160
1 36436 37076 36824

0.7 36592 37258 37003
0.3 37383 38130 43745
0.1 38756 39590 45304

0.03 40291 41165 47547
0.01 41692 42571 50793

Table: number of neutral steps
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Work is still in progress! The new Goudsmit-Saunderson model:
very promising, purely theory-based model for multiple scattering
physics performance is at least as good as Urban model but it shows even
better results in many cases
significant run-time improvements compared to Urban model
it seems that after 20 years we have a candidate to replace Urban model for
low energy (E < 0.1 − 1 GeV) e∓ multiple scattering

Thank you for your attention!
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We have the q2+(s/λ,G1s/λ; u) PDFs pre-computed over a pre-defined 2D grid of {(s/λ)i} and
{(G1s/λ)j} sets of parameter values carefully chosen such that linear interpolation in log(s/λ) and
G1s/λ will yield accurate results. If the actual parameter values are (s/λ)i ≤ s/λ < (s/λ)i+1,
(G1s/λ)j ≤ G1s/λ < (G1s/λ)j+1 and suppose that the final sampling from the PDF gives u i.e.
P−1(ξ) = u ξ ∈ U(0, 1) uk ≤ u < uk+1

interpolation in the parameters
identification of grid points uk ≤ u < uk+1 such that P(uk ) ≤ ξ < P(uk+1)
interpolation of the inverse CDF to obtain P−1(ξ) = u i.e. interpolation in the
P−1(ξk ) = uk ≤ P−1(ξ) = u < P−1(ξk+1) = uk+1 interval where xi` = P(u`)
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Sampling from parametrized PDF

Interpolation in the parameters: suppose that (i) we have p(A; x) PDF of the stochastic variable x
pre-computed over an A grid with {ai} pre-defined values of the parameter; (ii) the {ai} grid is dense
enough for linear interpolation in A

for a given ai ≤ a < ai+1 value of the parameter, first we should interpolate the the PDF between the
ai ≤ a < ai+1 parameter grid points to get p(a; x), then we should sample from the interpolated PDF
p(a; x)
however, since the {ai} grid is dense enough for linear interpolation of the PDF in A, we can use
interpolation by weights(or statistical interpolation) in the form
p(a; x) = ai+1−a

ai+1−ai
p(ai ; x) + a−ai

ai+1−ai
p(ai+1; x)

which results in a form of composition(i.e. in general p(x) =
∑

k Pk (pk (x))pk (x)) since the probability of
taking the PDF p(ai ; x) is P(p(ai ; x)) = ai+1−a

ai+1−ai
and the 1− P(p(ai ; x)) is the probability of taking the

PDF p(ai+1; x)
first we make the selection between the p(ai ; x) and p(ai+1; x) PDFs
we take p(ai ; x) if ξ < ai+1−a

ai+1−ai
, ξ ∈ U(0, 1) and p(ai+1; x) otherwise

then we need to sample from the selected, already pre-calculated and stored PDFs
note, that we can use this method since the q2+(s/λ,G1s/λ; u) PDFs are smooths and the pre-defined
parameter grids are dense enough that linear interpolation in log(s/λ) and G1s/λ will yield accurate results
the proper pre-computed q2+ PDF can be selected by using two uniform random sample
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Sampling of bins in case of pre-computed PDF

Identification of grid points: when we need to sample from a pre-computed p(x) PDF table with the
corresponding P(x) CDF we need to solve the inverse equation P−1(ξ) = x where ξ ∈ U(0, 1).

the first step is to find k such that P(xk ) = ξk ≤ ξ < P(xk+1) = ξk+1

this step can be done quickly if the inverse CDF P−1(ξ) is known at equally probably intervals
it means that Dom[P−1] = [0, 1] is divided up to equal bins
{ξk}N

k=0, ξk+1 − ξk = const. = 1/N ∀k ∈ 0, ...,N − 1 and the corresponding P−1(ξk ) = xk values are
known
however, usually it is the domain of the PDF that we divide up {xj}M

j=0, x0 = xmin, xM = xmax and we
compute the PDF p(xj ) at the grid points
in this case we have two possibilities to achieve equally probably intervals:

adjust the size of the individual bins of the {xj}M
j=0 grid such that∫ xj+1

xj
p(x)dx = const ∀j = 0, ...,M − 1. The easiest way to achieve this is: (i) define the grid

{ξk}N
k=0, ξk+1 − ξk = const. = 1/N ∀k ∈ 0, ...,N − 1; (ii) then determine the P−1(ξk ) inverse

CDF values by interpolation using the know P−1(ξj = xj ) values. HOWEVER, special care needs to
be taken when one interpolates the (inverse) CDF!!! (see later)

[A.J.Walker,Electronics Letters 10(8)(1974)127-128]

Mihály Novák Geant4 meeting 28-09-2015 6 / 13



Additional materials: Few words on angular deflection sampling

Sampling of bins in case of pre-computed PDF
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Additional materials: Few words on angular deflection sampling

Sampling of bins in case of pre-computed PDF

Identification of grid points: when we need to sample from a pre-computed p(x) PDF table with the
corresponding P(x) CDF we need to solve the inverse equation P−1(ξ) = x where ξ ∈ U(0, 1).

the first step is to find k such that P(xk ) = ξk ≤ ξ < P(xk+1) = ξk+1

this step can be done quickly if the inverse CDF P−1(ξ) is known at equally probably intervals
it means that Dom[P−1] = [0, 1] is divided up to equal bins
{ξk}N

k=0, ξk+1 − ξk = const. = 1/N ∀k ∈ 0, ...,N − 1 and the corresponding P−1(ξk ) = xk values are
known
however, usually it is the domain of the PDF that we divide up {xj}M

j=0, x0 = xminxM = xmax and we
compute the PDF p(xj ) at the grid points
in this case we have two possibilities to achieve equally probably intervals:

adjust the size of the individual bins of the {xj}M
j=0 grid such that∫ xj+1

xj
p(x)dx = const ∀j = 0, ...,M − 1. The easiest way to achieve this is: (i) define the grid

{ξk}N
k=0, ξk+1 − ξk = const. = 1/N ∀k ∈ 0, ...,N − 1; (ii) then determine the P−1(ξk ) inverse

CDF values by interpolation using the know P−1(ξj = xj ) values. HOWEVER, special care needs to
be taken when one interpolates the inverse CDF!!! (see later)
keep the equal size of the individual bins of the {xj}M

j=0 grid and reshuffle the p(xj ) PDF values
such that

∫ xj+1
xj

p(x)dx = const = mean ∀j = 0, ...,M − 1 by mixing ”probabilities” from different
bins i.e. barrow/lend probabilities and record it in a table (Walker’s alias sampling)

[A.J.Walker,Electronics Letters 10(8)(1974)127-128]
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Sampling of bins in case of pre-computed PDF
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Sampling of bins in case of pre-computed PDF

results in equally probably CDF bins
if we store:

the probability of the lower bars p(j)→ [0.5, 0.8, 1.0, 1.0, 0.9]
and the original bin locations of the moved pieces → [2, 3,−,−, 3]
in theory the sampling can be done with 2 independent random numbers ξ1, ξ2
the first will give one of the equally probably bins j
then if ξ2 < p(j) we will take the bin j → xj and the corresponding alias bin otherwise
however the same sampling can be straightforwardly done even with only one random number

drawbacks compared to the ”simply” equally probably CDF:
the monotonic property of the CDF is ”lost” i.e. ξa < ξb 6→ xa < xb since probabilities are mixed
from different bins (cannot used for sampling in a restricted interval)
additional random number is needed to perform the interpolation (within the sampled bin)
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Additional materials: Few words on angular deflection sampling

Interpolation of the inverse CDF

interpolation of the inverse CDF: after the determination of bin j such that P(ξj ) ≤ ξ < P(ξj+1) one
needs to solve P−1(ξ) = x i.e. interpolation within P−1(ξj ) = xj ≤ P−1(ξ) = x < P−1(ξj+1) = xj+1

using liner interpolation is usually not appropriate because it is equivalent to approximate the PDF
between xj and xj+1 (P−1(ξj ) = xj ,P−1(ξj+1) = xj+1) with a constant
the applied interpolation should satisfy dP−1(ξ)

dξ =
(dP(x)

dx

)−1
= 1

p(x) and P−1(ξj ) = xj ,
P−1(ξj+1) = xj+1
one can approximate the CDF within the bin by using second order Taylor approximation:

P(x) ≈ P̃(x) = P(xj ) + P ′(xj )[x − xj ] + 0.5P ′′(xj )[x − xj ]2 =
P(xj ) + p(xj )[x − xj ] + 0.5p′(xj )[x − xj ]2 ≈ P(xj ) + p(xj )[x − xj ] + 0.5 p(xj+1)−p(xj )

xj+1−xj
[x − xj ]2

that results in x = P−1(ξ) ≈ P̃−1(ξ) = xj −
[

p(xj )−
√

p2(xj ) + 2c[ξ − ξj ]
]
/c; c = p(xj+1)−p(xj )

xj+1−xj

dP̃−1(ξ)
dξ = 1√

2c(ξ−ξj )+p2(xj )

dP̃−1(ξ)
dξ |ξ=ξj

= 1
p(xj ) and P̃−1(ξj ) = xj

dP̃−1(ξ)
dξ |ξ=ξj+1

= 1
p(xj+1) and P̃−1(ξj+1) = xj+1 only if p(x) is linear between xj , xj+1

then the sampled value x ≈ x̃ = P̃−1(ξ) = xj −
[

p(xj )−
√

p2(xj ) + 2c[ξ − ξj ]
]
/c, where

c = p(xj+1)−p(xj )
xj+1−xj
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Interpolation of the inverse CDF

interpolation of the inverse CDF: after the determination of bin j such that P(ξj ) ≤ ξ < P(ξj+1) one
needs to solve P−1(ξ) = x i.e. interpolation within P−1(ξj ) = xj ≤ P−1(ξ) = x < P−1(ξj+1) = xj+1

using liner interpolation is usually not appropriate because it is equivalent to approximate the PDF
between xj and xj+1 (P−1(ξj ) = xj ,P−1(ξj+1) = xj+1) with a constant
the applied interpolation should satisfy dP−1(ξ)

dξ =
(dP(x)

dx

)−1
= 1

p(x) and P−1(ξj ) = xj ,
P−1(ξj+1) = xj+1
a better solution is to use rational function approximation in the form of

x = P−1(ξ) ≈ P̃−1(ξ) = xj + (1+aj +bj )α
1+ajα+bjα2 [xj+1 − xj ], where α = ξ−ξj

ξj+1−ξj

P̃−1(ξj ) = xj and P̃−1(ξj+1) = xj+1 independently form the values aj , bj
dP̃−1(ξ)

dξ = (1+aj +bj )(1−bjα
2)

[1+ajα+bjα2]2
xj+1−xj
ξj+1−ξj

and the parameters aj , bj can be determined from the
requirements
dP̃−1(ξ)

dξ |ξ=ξj
= 1

p(xj )

dP̃−1(ξ)
dξ |ξ=ξj+1

= 1
p(xj+1)

that yields bj = 1−
[
ξj+1−ξj
xj+1−xj

]2
1

p(xj )p(xj+1) and aj = ξj+1−ξj
xj+1−xj

1
p(xj ) − 1− bj

then the sampled value x ≈ x̃ = P̃−1(ξ) = xj + (1+aj +bj )α
1+ajα+bjα2 [xj+1 − xj ], with α = ξ−ξj

ξj+1−ξj

[F.Salvat,J.M.Fernández-Varea,J.Sempau,PENELOPE-2011,NEA/NSC/DOC(2011)5]
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